Углом к плоскости проведены две наклонные длина первой наклонной 13см а длина проекции 5 см Угол между проекциями наклонных 120 градусов, а довжжина отрезков соединяющей основания наклонных 19см. Вычислите угол между проекциями этих наклонных.
угол между проекциями этих наклонных = 120 по условию.
Вычислить вторую наклонную
Конечно! ведь если 120 - угол между наклонными, то решения нет.
Сперва с проекциями. вторая проекция - z по теореме косинусов 19² = 5² + z² - 2*5*z*cos(120) 361 = 25 + z² + 5z z² + 5z - 336 = 0 z₁ = (-5-√(25 +4*336)/2 = (-5-37)/2 = -21 - не подходит z₂ = (-5+37)/2 = 16 см ------------ высота из первой наклонной 13² = 5² + h² h² = 169-25 = 144 h = 12 см ------------- вторая наклонная l² = h^2 + z² l² = 12² + 16² = 4²*(3²+4²) = 4²*5² l = 4*5 = 20 см