Дан треугольник АВС, стороны которого равны:
АВ = 10 см, ВС =17 см и АС =21 см.
Из вершины большего угла В проведён перпендикуляр ВМ к его плоскости, равный 15 см.
Найти расстояние от конца этого перпендикуляра лежащего вне плоскости треугольника до большей стороны треугольника (АС).
Находим площадь треугольника по формуле Герона:
- полупериметр р = (10+17+21)/2 = 48/2 = 24.
- S = √(24*14*7*3) = √
7056 =
84.
Теперь находим высоту из точки В к стороне АС:
hb = 2S/b = 2*84/21 = 8.
Отсюда определяем искомое расстояние L от точки М до стороны АС.
L = √((hb)² + BM²) = √(64 + 225) = √289 = 17.