** столе лежит 160 внешне одинаковых монет. Известно, что среди них ровно 80 фальшивых....

0 голосов
60 просмотров

На столе лежит 160 внешне одинаковых монет. Известно, что среди них ровно 80 фальшивых. Разрешается указать на любые две монеты и спросить, верно ли, что обе эти монеты фальшивые. За какое наименьшее количество вопросов можно гарантированно получить по крайней мере один ответ «Верно»?


Математика (20 баллов) | 60 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Попробую.
Т.к. нужно получить гарантированный ответ "Верно", то будем рассматривать наихудший сценарий, когда во всех 80 парах оказалось по одной фальшивой и настоящей монете. Если вдруг на каком-то этапе в паре окажутся две настоящие монеты, то, по крайней мере, на последний 80-й вопрос мы получим ответ "Верно". Поэтому 80-й вопрос задавать всё равно придётся. Если, как мы предположили, фальшивые с настоящими монетами разбились на пары, то и на 80-й вопрос получим ответ "Неверно".

Далее берём две пары монет, в которых мы уже знаем, что там по фальшивой и настоящей монете. Отмечаем ещё раз, что проверка в парах уже была. Пусть первая пара содержит монеты №1 (фальшивая) и №2 (настоящая), а вторая пара - монеты №3 (фальшивая) и №4 (настоящая).
Берём из первой пары монету №1, а из второй пары монету №3. Оказались обе фальшивые, ответ "Верно". Более плохой вариант, если сначала из второй группы выбрали монету №4, тогда бы пришлось задавать ещё один вопрос о монетах №1 и №3. Итак, этот вариант даёт 2 дополнительных вопроса.
Ситуация хуже, а именно её мы ищем, если бы из первой пары мы выбрали монету № 2 (настоящая), то с обоими монетами из второй группы получим ответ "Неверно". Истратили 2 вопроса. Наконец, проверяется монета № 1 и монеты №3 и № 4. Получилось бы ещё 2 дополнительных вопроса, если бы в последнюю очередь выбрали монету №3.

Всего получилось бы в самом наихудшем сценарии 84 вопроса.

(43.0k баллов)