Найдите производную функции y=sin3x/3x, запишите правила и формулы, которые вы применяли...

0 голосов
26 просмотров

Найдите производную функции y=sin3x/3x, запишите правила и формулы, которые вы применяли при вычислении.


Алгебра (79 баллов) | 26 просмотров
Дан 1 ответ
0 голосов

Отдельно вычислим для обеих функций производные.
Производная сложной функции: (g(f(x))'=g'(f(x)*f'(x): (sin 3x)'=(sin3x)'*(3x)'=3 cos3x.
Производная знаменателя - (3х)'=3.
Функция представлена в виде частного, производная таких функций вычисляется по формуле: y'= (u/g)'= (u'g - g'u)/u^2.
Следовательно, y'= (3 cos3x*3x - 3sin3x)/9x^2=(9x* cos3x - 3sin3x)/9x^2.
Надеюсь на отсутствие опечаток.

(1.2k баллов)