1) tg(п/4-х/2)=-1
π/4 - x/2 = -π/4 + πk, k ∈Z
-x/2 = -π/2 + πk , k∈Z
x = π -2πk, k ∈Z
2) 2Sin(п/3-х/4)=√3
Sin(π/3 - х/4) = √3/2
(π/3 - х/4) = (-1)^n arcSin√3/2 + nπ, n ∈ Z
π/3 - х/4 = (-1)^n * π/3 + nπ, n ∈ Z
- х/4 = (-1)^n*π/3 + nπ - π/3, n ∈ Z
х = (-1)^(n+1)*4π/3 - 4πn +4π/3, n ∈ Z
3) 2 Cоs( П/4-3x) = √2
Cos(π/4 -3x) = √2/2
π/4 -3х = +- arcCos√2/2 + 2πk, k ∈Z
π/4 -3х = +- π/4 + 2πk, k ∈Z
-3x = - π/4 +- π/4 + 2πk, k ∈Z
x = π/12 +- π/12 - 2πk/3 , k ∈ Z