№1 найдите высоты треугольника со сторонами 10 см 10 см и 12 см

0 голосов
121 просмотров

№1
найдите высоты треугольника со сторонами 10 см 10 см и 12 см


Геометрия (21 баллов) | 121 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Наш треугольник  равнобедренный, значит высота, опущенная на основание 12см по Пифагору будет равна √(10²-6²) = √64 = 8см (так как высота и медиана, проведённые к основанию равнобедренного треугольника, совпадают между собой).
Ищем вторую высоту. Эта высота делит наш треугольник на два прямоугольных с общим катетом (искомой высотой). По Пифагору имеем: h² = 10² - X² и h² = 12² - (10-X)² , где h - общий катет, а Х - отрезок Стороны, на которую опущена высота h, считая от вершины нашего треугольника). Приравниваем оба выражения и получаем: 100 - Х² = 144 - 100 + 20Х - Х². Отсюда Х = 2,8см.
Тогда искомая высота равна h = √(100-2,8²) = √92,16 = 9,6cм.
или h = √(144-7,2²) = √(144-51,84) =  √92,16 = 9,6cм.



















(117k баллов)
0

А еще проще: S= 0,5*12*8=48см², но эта же полщадь S=0,5*10*Х, откуда Х= 48/5=9,6см. Как я сразу не увидел!