Площадь полной поверхности правильной четырехугольной призмы 6 дм^2. Найдите наибольший...

0 голосов
48 просмотров

Площадь полной поверхности правильной четырехугольной призмы 6 дм^2. Найдите наибольший объем этой призмы, зная, что сторона ее основания может принимать любые значения, принадлежащие промежутку (0,5;корень из 3)


Математика (59 баллов) | 48 просмотров
0

Может быть дм^2?

0

Спасибо)))

0

Ошиблась)

Дан 1 ответ
0 голосов
Правильный ответ
Дано:
площадь полной поверхности правильной четырехугольной призмы равна 6 дм^2.
Сторона основания (0,5; 
√3).
Найти максимальный объём призмы.

Обозначим:
 - сторона основания а,
 - высота призмы Н.

Площадь S = 2a² + 4aH = 6 дм².
Отсюда Н = (6 - 2а²)/4а = (3 -а²)/2а.
Находим функцию объёма: V = a²*H = (3a - a³)/2.
Производная этой функции равна:
V' = (-3/2)(a² - 1).
Приравниваем её нулю и находим экстремум а = +-1.
Определяем объём в заданных пределах стороны основания.
a =       0,5              1          1,732051
V = 0,6875              1           4,44E-16.
Как видим, максимум соответствует длине стороны основания а = 1 и равен V = 1 дм
³.
(309k баллов)