Вопрос в картинках...

0 голосов
29 просмотров

Решите задачу:

\left \{ {{3 ^{x+y} =27} \atop {(x-y) ^{2} =1}} \right.

Алгебра (739 баллов) | 29 просмотров
Дан 1 ответ
0 голосов

Решите задачу:

\left \{ {{3^{x+y}=27} \atop {(x-y)^2=1}} \right. \\ \left \{ {{3^{x+y}=3^3} \atop {(x-y)^2=1}} \right. \\ \left \{ {{x+y=3} \atop {(x-y)^2=1}} \right. \\ \left \{ {{x=3-y} \atop {(3-y-y)^2=1}} \right. \\ \left \{ {{x=3-y} \atop {3-2y=б1}} \right. \\ \left \{ {{x=3-y} \atop {y= \frac{3б1}{2} }} \right. \\ \\ \\ \left \{ {{x=3-y} \atop {y=1 }} \right. \\ \left \{ {{x=3-y} \atop {y=2 }} \right. \\ \\ \\ \left \{ {{x=2} \atop {y=1 }} \right. \\ \left \{ {{x=1} \atop {y=2 }} \right. \\ \\ OTBET:(1;2),(2;1)
(25.4k баллов)