1. Дано: ABCD – параллелограмм, точка О – точка пересечения диагоналей параллелограмма,...

0 голосов
86 просмотров

1. Дано: ABCD – параллелограмм, точка О – точка пересечения диагоналей параллелограмма, периметр треугольника АОВ равен 21 см, периметр треугольника BOC 24 см, CD = 6 см. Найти периметр параллелограмма ABCD.

2. В равнобедренной трапеции диагональ составляет с боковой стороной угол в 120градусов. Боковая сторона равна меньшему основанию. Найти углы трапеции.

3. В прямоугольной трапеции диагональ перпендикулярна к боковой стороне, острый угол трапеции равен 45градусов . Найдите отношение оснований

4.. ABCD – прямоугольник (Рисунок1), BE ^ АС, АВ = 12 см, АЕ : ЕС = 1 : 3. Найти диагонали прямоугольника.

5. 2. Дано: ABCD – прямоугольник (Рисунок2), СЕ BD, CD = 10 см, DЕ : ОС = 1 : 2. Найти диагонали прямоугольника.


История (12 баллов) | 86 просмотров
Дан 1 ответ
0 голосов

1 и 2 на фото,
3)Т.к. диагональ АС перпендикулярна стороне СЕ, получаем прямоугольный треуг-ик АСЕ. Рассмотрим его. Зная, что сумма острых углов прямоугольного треуг-ка равна 90°, находим неизвестный угол ЕАС:
Т.е. прямоугольный АСЕ - равнобедренный, т.к. углы при его основании АЕ равны. АС=ЕС.
Высота СН равнобедренного треугольника, проведенная к основанию, является также медианой. Значит АН=ЕН.
Рассмотрим прямоугольные треуг-ики АВС (он прямоугольный, т.к. трапеция прямоугольная) и АНС. Они равны по одному из признаков равенства прямоугольных треугольников: если гипотенуза и катет одного прямоугольного треуг-ка соответственно равны гипотенузе и катету другого, то такие треуг-ки равны. В нашем случае:
АС - общая гипотенуза
АВ=СН (АВ является по сути той же высотой трапеции).
Значит, ВС=АН
Но АН=1/2АЕ, значит
ВС=1/2АЕ.
(Чертёж на фото)
4)на фото(+там же 3 сверху)
5)на фото


image
image
image
image
(7.6k баллов)