Пусть у нас x сундуков по 3 мешка, y по 4 мешка и z по 5 мешков.
Сундуков всего 50
x + y + z = 50
А мешков всего 200
3x + 4y + 5z = 200
Получили систему, в которой нужно подобрать максимальное x.
Умножаем 1 уравнение на -4 и складываем со 2 уравнением.
-4x - 4y - 4z + 3x + 4y + 5z = -200 + 200
-x + z = 0
x = z
Сундуков с 5 мешками столько же, сколько с 3 мешками.
И мы знаем что сундуков с 4 мешками не меньше, чем с 5. y >= x.
Подставляем в 1 уравнение.
x + y + x = 50
x = (50 - y)/2
Чтобы x было целым, y должно быть четным.
Если y = 16, то x = (50 - 16)/2 = 34/2 = 17 > y - не подходит.
Если y = 18, то x = (50 - 18)/2 = 32/2 = 16 < y - подходит.
Если y > 18, то x < 16, а нам надо максимальное x.
Ответ: сундуков с 3 мешками максимум 16, с 5 тоже 16, с 4 мешками 18.