2x² + y² + 2xy - 16x - 6y + 2052
Запишем заданное выражение в виде :
(x + y - 3)² + (x - 5)² + 2018
это выражение принимает наименьшее значение, когда квадраты, то есть первые две скобки равны нулю.
(x - 5)² равно нулю при x = 5 , а если x = 5 , то из первой скобки (x + y - 3)², подставив вместо х число 5, получим, что для того, чтобы и эта скобка равнялась нулю, y должен равняться - 2 . Если первые две скобки равны нулю, то значение выражения равно 2018 - это и будет наименьшим значением.
Ответ : x = 5 , y = - 2 , наименьшее значение 2018