две стороны треугольника равны 6см и 8см,а угол между ними 30 градусов. Найти площадь...

0 голосов
40 просмотров

две стороны треугольника равны 6см и 8см,а угол между ними 30 градусов. Найти площадь этого треугольника


Геометрия (15 баллов) | 40 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Площадь треугольника можно вычислить по формуле:
S=(1/2)*a*b*sina, где а и b - стороны треугольника, а sina - синус угла между этими сторонами.
S=(1/2)*6*8"(1/2)=12см^2.
Или так: проведем высоту ВН к стороне АС. Это катет, лежащий против угла 30°. Он равен половине гипотенузы.
Тогда если сторона АВ=6см (гипотенуза), а сторона АС=8см, то ВН=3см и площадь треугольника равна S=(1/2)*AC*BH =(1/2)*8*3=12см^2.
Если АВ=8см, а АС=6см, то ВН=4см и S=(1/2)*6*4=12см^2.
Ответ: площадь треугольника равна 12см^2.

(117k баллов)