Задания во вложении.

0 голосов
19 просмотров

Задания во вложении.


image

Геометрия (535 баллов) | 19 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Поскольку решение задания №1 сводится к внимательному вычислению данных по известным формулам, и решение уже дано, приводить его нет смысла. Решение же задания №2 требует построения, поэтому добавлю решение этой задачи координатным методом, который является хорошей проверкой чисто геометрического решения.
Итак, привяжем систему координат к одной из вершин куба (например, к вершине D).  Тогда
даны точки: С(2√3;2√3;0), D1(0:2√3;2√3) и В1(2√3;0;2√3)
Для составления уравнения плоскости СD1B1 используем формулу:
|x-Xc  Xd1-Xc  Xb1-Xc|
|y-Yc  Yd1-Yc  Yb1-Yc| = 0.
|z-Zc  Zd1-Xc  Zb1-Zc|
Подставим данные трех наших точек:
|x-2√3  0-2√3      2√3-2√3|                 |x-2√3  -2√3  0  |
|y-2√3  2√3-2√3    0-2√3  | = 0.  Или |y-2√3   0   -2√3| = 0.
|z-0    2√3-0          2√3-0  |                 |z-0     2√3  2√3|
Раскрываем определитель по первому столбцу, находим уравнение плоскости CD1B1:
             | 0 -2√3|                 |-2√3 0 |        | -2√3  0|
(x-2√3)*|2√3 2√3| - (y-2√3)*|2√3 2√3| +z*| 0 -2√3| =0.  =>

(x-2√3)*12- (y-2√3)*(-12)+z*(12) =0.
12х-24√3 +12y-24√3 +12z =0.     Или
x+y+z-4√3 =0.   Это уравнение плоскости СD1B1 с коэффициентами:
А=1, В=1, С=1 и D=-4√3.
Найдем расстояние от точки D(0;2√3;0) до этой плоскости по формуле:
p= |A*Xd+В*Yd+C*Zd+D)/√(A²+B²+C²) = |0+2√3+0-4√3|/√3 = 2.
Ответ: р=2.

Геометрический метод:
Плоскость CD1B1 параллельна диагонали BD основания куба, так как
D1B1||DB.
Следовательно, расстояние от точки D до этой плоскости равно
расстоянию от прямой DB до плоскости. Но это расстояние -  перпендикуляр ОН из точки О (пересечение диагоналей основания) к
прямой CJ, принадлежащей плоскости CD1B1.
ОН - высота треугольника ОJC из прямого угла О к гипотенузе СJ и по ее свойствам равна:
h=a*b/c, где
а=ОС=(1/2)*АС = (1/2)*√(12+12) = √6,
b=OJ=2√3 (сторона куба).
c=√(a²+b²) = 3√2 (по Пифагору).
Тогда h=√6*2√2/3√2 = 2.
Расстояние равно 2.

(117k баллов)
0 голосов

Решение в приложении.


image
(72.0k баллов)
0

спасибо