Рассмотрим функцию f(x)=9|x-3|-4x+|3x-|x+a||; наше уравнение принимает вид f(x)=0. Заметим, что при любом раскрытии модулей знак перед x будет определяться первым слагаемым. Это происходит по той причине, что в нем коэффициент при x равен плюс минус 9, а остальные набирают по модулю максимум 8. Поэтому наша функция убывает слева от 3 и возрастает справа от 3, при этом на бесконечности она стремится к бесконечности. Иными словами, график нашей функции - "немного" исковерканная галка - график модуля. Найдем
f(3)=9|3-3|-4·3+|3·3-|3+a||= -12+|9-|3+a||.
Для того, чтобы уравнение имело два корня, необходимо и достаточно, чтобы f(3)<0; -12+|9-|3+a||<0; |9-|3+a||<12; чтобы было легче в дальнейшем, воспользуемся тем, что |b|=|-b|, поэтому можно переписать неравенство в виде ||3+a|-9|<12; -12<|3+a|-9<12; -3<|3+a|<21; левое неравенство выполнено автоматически, поскольку модуль не может быть меньше нуля, остается |3+a|<21; -21<3+a<21; -24<a<18.<br>
Ответ: a∈(-24;18)