Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и...

0 голосов
1.1k просмотров

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=16, MN=12. Площадь треугольника ABC равна 80. Найдите площадь треугольника MBN.


image

Геометрия (15 баллов) | 1.1k просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Треугольники MBN и АВС подобны, так как MN параллельна АС.
Из подобия: MN/AC=12/16=3/4. Это коэффициент подобия.
Площади подобных треугольников относятся как квадрат коэффициента подобия, то есть Smbn/Sabc=9/16. Тогда Smbn=(9/16)*Sabc или
Smbn=(9/16)*80=45 ед².

(117k баллов)