∆АBС и ∆А1Б1BС1, где ВС=В1С1, угол С=углу С1 и АВ+АС=А1В1+А1С1. Доказать, что медианы ВD...

0 голосов
58 просмотров

∆АBС и ∆А1Б1BС1, где ВС=В1С1, угол С=углу С1 и АВ+АС=А1В1+А1С1. Доказать, что медианы ВD и В1D1 равны


Геометрия (12 баллов) | 58 просмотров
Дан 1 ответ
0 голосов

Достаточно доказать, что треугольники равны между собой. Построим треугольники со сторонами КВС и К1В1С1, так, что КС=АВ+АС= К1С1, К ик1 на продолжении СА и С!А1, соответственно.
Эти треугольниеи равны по двум сторонам и углу между ними.
Из середины кв возведем перпендикуляр  до пересечения с АС в точке М.
Также из середины К1В1 до М1.
Треугольники  КМВ и К!М1В1 , очевидно равнобедренные и равны между собой. Значит АВ=А1В1 и АС=КС-АВ=К1С1-А1В1=А1С1.
Значит ∆АBС = ∆А1Б1BС1 по трем сторонам. Значит и соответствующие медианы равны между собой.

(62.1k баллов)