1. Какая из функций является квадратичной a) y = 3x - x^2 В) у = -3x+ 5 b) y= 2x^2 + x^3...

0 голосов
293 просмотров

1. Какая из функций является квадратичной
a) y = 3x - x^2 В) у = -3x+ 5

b) y= 2x^2 + x^3 г) y = 5/x^2 - x ?

2. Найдите нули функции
a) y= x^2 - 6x + 8; b) y=2x^2 + 6x; в) y = -2x^2 + 3x + 5


Алгебра (12 баллов) | 293 просмотров
Дан 1 ответ
0 голосов

1) Квадратичная функция имеет вид ах² + bx + c, поэтому подходит ответ под буквой а) y = 3x - x²
2) Нулями функции называются такие значения х, при которых значение функции (т. е. y) равно нулю
а) у = х² - 6х + 8 = 0
Решим квадратное уравнение через дискриминант.
x = 2
x = 4
Это и есть нули функции
б) y = 2x² + 6x
Вынесем общий множитель
2х(х + 6) = 0
Произведение равно нулю, когда хотя бы один из множителей равен нулю.
2х = 0
х + 6 = 0
х = 0
х = -6
в) у = -2х² + 3х + 5 = 0
Домножим на -1, чтобы избавиться от минуса перед иксом
2х² - 3х - 5 = 0
Решаем через дискриминант:
x = 1
x = 
\frac{5}{2}




(232 баллов)