1) = 6х⁵
2) = 4 - 1/х²
3) = 1/2√х -4х
4) = х³ -4/√х +4/х²
5) = 2(4х² -3х +7) +(2х +3)(8х -3)= = 8х² -6х +14 +16х² +24х -6х -9 =
= 24х²+12х +5
6) = ((2х -2)(х +4х³) - (х² -2х)(1 +12х))/(х +4х³)² =
=(2х² -2х +8х⁴ -8х³ - х² +2х -12х³ +24х²)/(х + 4х³)²=
=(8х⁴- 20х³+25х²)/(х +4х³)²
1вар.
а) f'(x) = 2(x² +4x -1)(2x +4)
б) f'(x) = 1/2√(x² +5x +5) * (2x +5)
в) f(x) = (18 +x)/6)⁻³ = (6/(18 +х) )³
f'(x) = 3(6/(18 +х) )² * (6/(18 +х) )' = 3(6/(18 +х) )² * 6/ (18 +х)²
г) f'(x) = 21/(7х -7)⁴
д) f'(x) = 10(2x -3)⁹ * 2 - 2(9 -3x) *(-3) = 20(2x -3)⁹ +6(9 -3x)