A)f(x)=3x−4x3 x0=5f′(x)=3−12x2f′(x0)=3−12(5)2=−297
\begin{lgathered}b)f(x)=x^7-3x^6+3x^3-23; \ x_0=-1\\ f'(x)=7x^6-18x^5+9x^2\\ f'(x_0)=7+18+9=34\end{lgathered}b)f(x)=x7−3x6+3x3−23; x0=−1f′(x)=7x6−18x5+9x2f′(x0)=7+18+9=34
\begin{lgathered}c)f(x)(1+2x)(2x-1)+4x^2; \ x_0=0,5\\ f'(x)=(1+2x)*2+2(2x-1)+8x\\ f'(x_0)=(1+2*0,5)*2+2*(2*0,5-1)+8*0,5=\\ =4+0+4=8\end{lgathered}c)f(x)(1+2x)(2x−1)+4x2; x0=0,5f′(x)=(1+2x)∗2+2(2x−1)+8xf′(x0)=(1+2∗0,5)∗2+2∗(2∗0,5−1)+8∗0,5==4+0+4=8
\begin{lgathered}d)f(x)=x^2(x-5); \ x_0=-4\\ f'(x)=2x(x-5)+x^2*1\\ f'(x_0)=-8(-4-5)+16=88\end{lgathered}d)f(x)=x2(x−5); x0=−4f′(x)=2x(x−5)+x2∗1f′(x0)=−8(−4−5)+16=8