Ваня последовательно разделил задуманное им натуральное число ** 4, ** 6 и ** 8, получив...

0 голосов
256 просмотров

Ваня последовательно разделил задуманное им натуральное число на 4, на 6 и на 8, получив в каждом из случаев некоторый остаток. Сумма этих остатков равна 15. Какой остаток даёт задуманное Ваней число при делении на 12?
Оформление простое пж


Математика (12 баллов) | 256 просмотров
Дан 1 ответ
0 голосов

N = 4k + a1 = 6m + a2 = 8n + a3
a1 + a2 + a3 = 15
Учитывая, что а1, а2, а3 - это остатки, получаем такие ограничения:
a1 < 4; a2 < 6; a3 < 8.
Максимальные остатки a1 = 3, a2 = 5, a3 = 7 как раз дают сумму 15. 
N = 4k + 3 = 6m + 5 = 8n + 7.
Надо заметить, что если при делении на 8 число дает остаток 7, то при делении на 4 оно всегда будет давать остаток 3.
Если к этому числу N прибавить 1, то оно делится на 4, 6 и 8.
Это числа N+1 = 24, 48, 72, 96, ... Тогда N = 23, 47, 71, 95, ...
При делении на 12 они все дают остаток 11

(380 баллов)