Докажите что сумма медиан треугольника меньше его периметра

0 голосов
40 просмотров

Докажите что сумма медиан треугольника меньше его периметра


Геометрия (22 баллов) | 40 просмотров
Дан 1 ответ
0 голосов
Отложим на продолжении медианы AM за точку M отрезок MA1, равный AM. Тогда ABA1C — параллелограмм (см рисунок)
Поэтому
BA1 = AC, 2AM = AA1 < AB + BA1 = AB + AC

Отсюда следует, что AM < 1/2(AB + BC).
Аналогично докажем, что
BN < 1/2(AB + BC),
CK < 1/2(AC + BC).
Сложив почленно эти три неравенства, получим:
AM + BN + CK < AB + BC + AC.
(31 баллов)