Докажите тождество:

0 голосов
35 просмотров

Докажите тождество:
C^{7}_{n} +C^{6}_{n} =C^{7}_{n+1}


Алгебра (12 баллов) | 35 просмотров
Дан 1 ответ
0 голосов

 $C_{n}^{7}+C_{n}^{6} = \frac{n!}{7!(n-7)!} + \frac{n!}{6!(n-6)!} \\ 
 (n-7)! = \frac{(n-6)!}{n-6} \\\\ 
 \frac{n!}{7!(n-7)!} + \frac{n!}{6!(n-6)!} = \frac{n!(n-6)}{7!(n-6)!} + \frac{7n!}{7!(n-6)!} = \\ 
 
 \frac{n!n+n!}{7!(n-6)!} = \frac{n!(n+1)}{7(n-6)!} = \frac{ (n+1)!}{7! (n-6)!} = 
 C_{n+1}^{7}
(224k баллов)