В окружности с центром О,проведена хорда LM,длина которой равна длине радиуса....

0 голосов
70 просмотров

В окружности с центром О,проведена хорда LM,длина которой равна длине радиуса. перпендикулярно этой хорде проведен диаметр ЕК. Диаметр ЕК и хорда LM пересекаются а точке А. длина отрезка LA равна 12,4 см.
1)постройте чертеж по условию задачи
б)найдите длину хорды LM
с)вычислите длину диаметра ЕК
д) найдите периметр треугольника OLM


Геометрия | 70 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

LO = LM по условию
Диаметр, перпендикулярный к хорде, делит эту хорду пополам ⇒
LM = 2LA = 2 * 12.4 = 24.8 cм

LO = OM = LM = 24.8
EK = 2LO = 2 * 24.8 = 49.6 cм

Р(OLM) = 24.8*3 = 74.4 см


image
(138k баллов)
0

спасибо

0

ответьте еще на рдин вопрос

0

я задала его

0

начертите окружность с центром О и отметьте на ней точку А. постройте хорду АВ так,чтобы центральный угол:
а)угол АОВ=60°
б)угол АОВ=120°

0

вот он такой