Помогите пожалуйста решить Нужно найти общее решение линейного однородного...

0 голосов
33 просмотров

Помогите пожалуйста решить
Нужно найти общее решение линейного однородного дифференциального уравнения: 2y'''-7y''=0
И если можно с объяснениями


Математика (54 баллов) | 33 просмотров
Дан 1 ответ
0 голосов
найти общее решение линейного однородного дифференциального уравнения: 2y'''-7y''=0

Решение
--------------------------------------------------------------------------------------------------
Линейным однородным дифференциальным уравнением высшего (3-го) порядка с постоянными коэффициентами называется уравнение вида
                               y⁽³⁾ + a₁
y⁽²⁾ + a₂y' + a₃ = 0
где
коэффициенты a₁, a₂, a₃ – заданные действительные числа.

Общим решением линейного однородного дифференциального уравнения 3 порядка с постоянными коэффициентами является линейная комбинация
                   y(x) = C₁y₁(x) +
C₂y₂(x) + C₃y₃(x)

–линейно независимых на том же отрезке частных решений этого уравнения y₁(x), y₂(x), y₃(x)

Для их нахождения составляется и решается характеристическое уравнение
                                 k³ + a₁k² + a₂k + a₃ = 0
Получаемое заменой в исходном дифференциальном уравнении производных y⁽ⁿ⁾ искомой функции степенями kⁿ , причем сама функция заменяется единицей y⁽⁰⁾ =1. Характеристическое уравнение – это алгебраическое уравнение степени n.

Каждому из n корней характеристического уравнения соответствует одно из n линейно независимых частных решений линейного однородного дифференциального уравнения, причем:
(11.0k баллов)