Решите неравенство: (значок I - значит модуль)>0

0 голосов
34 просмотров

Решите неравенство: (значок I - значит модуль)
\frac{I \sqrt{x} - 1I- \sqrt{x} }{I2x-1I-x}>0


Алгебра (515 баллов) | 34 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
\frac{I \sqrt{x}-1 I- \sqrt{x} }{I2x-1I-x} \ \textgreater \ 0

Найдем ОДЗ:
x<0<br>x<0<br>l 2x01 l -x =0

x<0<br>l 2x-1 l -x=0

x<0<br>x=1
x=1/3

x∈(-∞;0)∪{1/3;1}

Окончательное ОДЗ:

x∈[9;1/3)∪(1/3;1)∪(1;+∞);

Теперь дело за малым(

Посмотрим на ВСЕ случаи :

\left \{ {{I \sqrt{x} -1 I -\sqrt{x}\ \textgreater \ 0 } \atop {I2x-1I\ \textgreater \ 0}} \right. \\ \\ 
 \left \{ {{I \sqrt{x}-1I-\sqrt{x}\ \textless \ 0 } } \atop {I2x-1I-x\ \textless \ 0}} \right. \\ \\

При открытии модуля опять 2 случая, если нужно розпишу, а так:

\left \{ {{x\in(-\infty; \frac{1}{4}) } \atop {x\in(-\infty; \frac{1}{3})U(1;+\infty) } }} \right. \\ \\ \\ \\ 
\left \{ {{x\in(\frac{1}{4};+\infty)}} \atop {x\in(\frac{1}{3};1)}} \right.

Находим пересечения из первой системы : x∈(-∞;1/4)
Из второй системы: x∈(1/3;1)

Находим их объединение :

x\in(-\infty;\frac{1}{4})U(\frac{1}{3};1)

Не забываем про ОДЗ и находим их общее объединение, что и будет ответом:

Ответ:x\in[0;\frac{1}{4})U(\frac{1}{3};1)
(5.7k баллов)