Решите неравенство:

0 голосов
36 просмотров

Решите неравенство:


image

Алгебра (1.4k баллов) | 36 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

(1)
log_3^2(4-x)\ \textless \ 1\\\\ log_3^2(4-x)-1^2\ \textless \ 0\\\\ (log_3(4-x)+1)*(log_3(4-x)-1)\ \textless \ 0\\\\ -1\ \textless \ log_3(4-x)\ \textless \ 1\\\\ \begin{equation*} \begin{cases} log_3(4-x)\ \textgreater \ -1\\ log_3(4-x)\ \textless \ 1 \end{cases} \end{equation*}\\\\ \begin{equation*} \begin{cases} log_3(4-x)\ \textgreater \ log_3(3^{-1})\\ log_3(4-x)\ \textless \ log_3(3) \end{cases} \end{equation*} \begin{equation*} \begin{cases} 4-x\ \textgreater \ \frac{1}{3}\\ 4-x\ \textless \ 3\\ 4-x\ \textgreater \ 0 \end{cases} \end{equation*}

\begin{equation*} \begin{cases} x\ \textless \ \frac{11}{3}\\ x\ \textgreater \ 1\\ x\ \textless \ 4 \end{cases} \end{equation*}

x\in(1;\ \frac{11}{3})
---------------------------------------
(2)
log_{0.2}^2(x)-5*log_{0.2}(x)\ \textless \ -6\\\\ log_{0.2}^2(x)-5*log_{0.2}(x)+6\ \textless \ 0\\\\ (log_{0.2}(x)-2)*(log_{0.2}(x)-3)\ \textless \ 0\\\\ 2\ \textless \ log_{0.2}(x)\ \textless \ 3\\\\ 2\ \textless \ log_{5^{-1}}(x)\ \textless \ 3\\\\ 2\ \textless \ -log_{5}}(x)\ \textless \ 3\\\\ \left \{ {{log_{5}}(x)\ \textless \ -2} \atop {log_{5}}(x)\ \textgreater \ -3}} \right. ;\\\\ \left \{ {{log_{5}}(x)\ \textless \ log_5(5^{-2})} \atop {log_{5}}(x)\ \textgreater \ log_5(5^{-3})}} \right. \\\\ \left \{ {{x\ \textless \ \frac{1}{25}} \atop {x\ \textgreater \ \frac{1}{125}}}\\ \atop {x\ \textgreater \ 0} \right. \\\\ x\in(\frac{1}{125}};\ \frac{1}{25}})

(8.6k баллов)