Точка М удалена от плоскости прямоугольного треугольника ** расстояние равное 5√3 и...

0 голосов
594 просмотров

Точка М удалена от плоскости прямоугольного треугольника на расстояние равное 5√3 и равноудалена от каждой его стороны. Найдите расстояние от точки М до каждой из сторон этого треугольника, если его гипотенуза и один из катетов равны соответственно 25 и 15.


Геометрия (122 баллов) | 594 просмотров
Дан 1 ответ
0 голосов

Спроецируем точку M на плоскость треугольника. Точка на плоскости будет M1. Т.к. M1 равноудалена от всех сторон треугольника, то она является центром вписанной окружности
Второй катет равен √25^2-15^2=√400=20
Радиус вписанной окружности в прямоугольном треугольнике равен ((25+20+15)-2*25)/2=5
Расстояние от M до любой стороны √(5^2+(5√3)^2)=√100=10

(3.7k баллов)