1) x ≥ -1
x(x+1) + a = 0
x² + x + a = 0
D = 1 - 4a
чтобы имело решение 1 - 4а ≥ 0; a ≤ 0,25
x₁ = (-1 + √(1-4a))/2
x₂ = (-1 - √(1-4a))/2
x должны быть больше либо равны -1:
(-1 + √(1-4a))/2 ≥ -1
-1 + √(1-4a) ≥ -2
√(1-4a) ≥ -1 - верно для всех а
(-1 - √(1-4а))/2 ≥ -1
-1 - √(1-4а) ≥ -2
√(1-4а) ≤ 1
1 - 4а ≤ 1
а ≥ 0
т.е. в данном случае ответы:
x₁ = (-1 + √(1-4a))/2
x₂ = (-1 - √(1-4a))/2, если а∈[0; 0,25) (при а = 0,25 корни равны и равны -0,5)
x = (-1 + √(1-4a))/2, если а<0<br>
2) x < -1
x(-x-1) + a = 0
-x² - x + a = 0
x² + x - a = 0
D = 1 + 4a ≥ 0 a ≥ -0,25
x₁ = (-1 + √(1+4a))/2 < -1
x₂ = (-1 - √(1+4a))/2 < -1
√(1 + 4a) < -1 - не верно ни для каких а
-√(1+4а) < -1
√(1+4a) > 1
1 + 4a > 1
4a > 0
a > 0
Ответ в этом случае:
x = (-1 - √(1+4a))/2, если а > 0
Объединяя ответы, получаем:
1)x = (-1 + √(1-4a))/2, если а<0<br>
2)x₁ = (-1 + √(1-4a))/2
x₂ = (-1 - √(1-4a))/2
x₃ = (-1 - √(1+4a))/2, если а∈[0; 0,25)
3)x₁ = -0,5
x₂ = (-1-√2)/2, если а = 0,25
4)x = (-1 - √(1+4a))/2, если а > 0,25