1. Наибольшее и наименьшее значения заданной функции на заданном отрезке без помощи производной :
y=√(1+cos2x) , [-п/2, 0] ,
Косинус имеет максимум при х = 0, равный 1.
Поэтому наибольшее значение заданная функция имеет при х = 0, у = √2.
Наименьшее значение заданной функции соответствует х = -π/2, тогда подкоренное выражение равно 0 и вся функция равна 0.
2.Наименьшее и наибольшее значения заданной функции на заданном отрезке :
y=2cosx+x , [-п/2, п/2].
Функция представляет сумму косинуса и прямой линии.
Максимум функции при х = π/6 равен √3 + (π/6).
Минимум функции при х = -π/2 равен -π/2.