Основание пирамиды - прямоугольный треугольник с острым углом А. Две боковые грани,...

0 голосов
73 просмотров

Основание пирамиды - прямоугольный треугольник с острым углом А. Две боковые грани, содержащие стороны этого угла, перпендикулярны плоскости основания, а третья наклонения к нему под углом В и имеет площадь S. Найдите объем пирамиды.


Геометрия (114 баллов) | 73 просмотров
Дан 1 ответ
0 голосов

1)sinβ=H/DE⇔DE=H/sinβDE-медиана наклонённой грани2)tgβ=H/AE⇔AE=H/tgβAE-медиана, опущенная из угла α3)sin(α/2)=CE*tgβ/H⇔CE=H*sin(α/2)/tgβСE-половина катета, который лежит против угла α4)AC²=(H²/tg²β)-(H²sin²(α/2)/tg²β)=H²(1-sin²(α/2))/tg²βAC=H*cos(α/2)/tgβAC-катет, прилежащий к углу α5)Sосн=H*cos(α/2)*2*H*sin(α/2) / 2*tg²β = H*cos(α/2)*sin(α/2) / tg²β6)V=H*cos(α/2)*sin(α/2)*H / 3*tg²β = H²*cos(α/2)*sin(α/2) / 3*tg²β
Не уверенна на счет правильности :с

(46 баллов)
0

Ой, он так напечатал...
Там нормально было, а сайт исправил