Если делитель кратен 14, 21 и 35 одновременно, то он кратен и всем делителям этих чисел и их произведению: 14=2*7, 21=3*7, 35=5*7, то есть, кратен 2*3*5*7=210. В то же время, по условию, делитель не кратен 20=2*2*5, 50=2*5*5, 63=3*3*7, то есть, не должен содержать в себе одновременно либо 2 двойки и пятёрку, либо двойка и 2 пятёрки, либо 2 тройки и семёрку. Это исключает возможность домножения 210 на 2, 3 и 5. Поскольку все делители числа 6300/210=30 содержат в себе эти цифры, дальнейшее увеличение делителя, при котором не нарушалось бы условие задачи, невозможно. Отсюда следует, что искомый пароль - 210.
Ответ: 210.