Решите неравенство: sin (x/2) * cos (x/2)>=1/4 И укажите 1 отрицательное решение Прошу, помогите
x=[pi/6;5pi/6]
учитывая период 2pi
x=[pi/6+2pik; 5pi/6+2pik}
что значит отрицательное решение?
А можете поподробнее решение написать? Нужно указать любой 1 отрицательный корень)
я решение все расписала, а отрицательный корень бери при отрицательном к
А как вы получили 0.5sinx>=0.25? Просто там надо по формуле двойного угла делать
формулу синуса двойного угла надо знать
Смотрите, я раскладываю по этой формуле как (1-cosx)(1+cosx)/2 >=1/4. Потом это получается 1-cos^2x/2>=1/4. А дальше что? Что я неправильно делаю? Спасибо за ответ
это вообще не та формула
Умножая на 2 обе части и использовав формулу 2sina*cosa=sin2a , получаем sinx>=1/2 Откуда pi/6+2*pi*k<=x<=5pi/6+2*pi*k примеру при k=-1 отрицательное решение x=-11*pi/6