1. Сформулируйте и докажите первый признак параллельности прямых 2. Один из внешних углов...

0 голосов
108 просмотров

1. Сформулируйте и докажите первый признак параллельности прямых
2. Один из внешних углов равнобедренного треугольника равен 110°. Найти углы этого треугольника


Геометрия (19 баллов) | 108 просмотров
Дан 1 ответ
0 голосов

1. Теорема 1 (первый признак параллельности)
Если при пересечении двух прямых третьей накрест лежащие(внутренние или внешние) углы равны, то такие прямые параллельны.

Доказательство:

Дано: прямые AB, CD и MN; угол 1= угол 2 .
Требуется доказать: AB||CD.

Возьмем точку O — середину MN и проведем OK перпендикулярно CD. Докажем, что OK перпендикулярно AB. Треугольник OKN= треугольник OLM (по стороне и двум прилежащим углам). В них угол OLM= углу OKN. Но угол OKN = 180 градусов. Следовательно, KL перпендикулярно AB: AB||CD. Если будет дано, что равны внешние накрест лежащие углы, то обязательно будут равны и внутренние накрест лежащие углы.

2. Поскольку сумма всех углов треугольника равна 180 градусам, то
180 - 110 = 70
70 / 2 = 35
Ответ: углы треугольника 35 и 35.

(148 баллов)