Помогите пожалуйста В основании четырёхугольной пирамиды трапеция с острым углом 30° и...

0 голосов
1.4k просмотров

Помогите пожалуйста
В основании четырёхугольной пирамиды трапеция с острым углом 30° и высотой 26 см. Боковые грани пирамиды, которые содержат короткое основание и короткую боковую сторону трапеции, образуют с плоскостью трапеции прямой угол и перпендикулярны одна другой. Остальные боковые грани образуют с плоскостью трапеции угол величиной 60°.

1. Определи вид трапеции, которая лежит в основании пирамиды:

2. Рассчитай площадь боковых граней трапеции: S= [ ] √ + []
см2


Геометрия (12 баллов) | 1.4k просмотров
Дан 1 ответ
0 голосов

Трапеция в основании прямоугольная.
Её высота, она же боковая сторона, АС = 26 см
Грань АВТ наклонена к основанию на 60°, значит 
∠САТ = 60°
в ΔСАТ
∠СТА = 90 - 60 = 30°
Катет против угла в 30° в два раза меньше гипотенузы, 
АТ = 2*26 = 52 см
Высота пирамиды по теореме Пифагора
СТ = √(АТ² - АС²) = √(52² - 26²) = 26√3 см
S(CTA) = 1/2*СТ*СА = 1/2*26*26√3 = 338√3 см²
---
Плоскость ТДВ наклонена к плоскости основания по условию на 60°
Линия ДВ является линией пересечения плоскостей
∠СФТ является углом между плоскостями
∠СФТ = 60°
ФС = 26 см
---
в ΔСДФ
∠СДФ = 30°
∠СФД = 90°
СД = 2*ФС = 52 см
S(СДТ) = 1/2*СТ*СД = 1/2*26√3*52 = 676√3 см²
---
в ΔАВС
∠АВС = 15°
tg(15°) = 2-√3
ctg(15°) = 2+√3
АВ/АС = ctg(15°)
АВ = 26*(2+√3) см
АТ = 52 см
S(АВТ) = 1/2*АВ*АТ = 1/2*26*(2+√3)*52 = 1352 + 676√3 см²
---
S(ДВТ) = S(ФВТ) - S(ФДТ) = S(АВТ) - S(ФДТ)
S(ФДТ) = 1/2*ФД*ФТ = 1/2*26√3*52 = 676√3 см²
S(ДВТ) = 1352 + 676√3 - 676√3 = 1352 см²
---
S(бок) = S(CTA)  + S(СДТ) + S(АВТ) + S(ДВТ)
S(бок) = 338√3 + 676√3 + 1352 + 676√3 + 1352 = 2704 + 1690√3 см²


image
(32.2k баллов)