В геометрической прогрессии n-ый член равен 567, а сумма первых n членов равна 847....

0 голосов
66 просмотров

В геометрической прогрессии n-ый член равен 567, а сумма первых n членов равна 847. Найдите её первый член, если знаменатель прогрессии равен 3.


Алгебра (14 баллов) | 66 просмотров
Дан 1 ответ
0 голосов

An = a1*q^(n-1) = 567
a1 + a2 + ... + an = a1 + a1*q + ... + a1*q^(n-1) = a1 * (q^n - 1)/(q - 1) = 847
q = 3

a1 * 3^n / 3 = 567
a1 * (3^n - 1)/2 = 847

a1 * 3^n = 1701
a1 * 3^n - a1 = 1649
{вычитаем из первого равенства второе}
a1 = 7

(8.5k баллов)