Это биквадратное уравнение. Решается оно методом введения новой переменной.
x⁴ + 12x² + 27 = 0
Пусть x² = t. Тогда:
t² + 12t + 27 = 0
По теореме Виета:
t₁ = -9
t₂ = -3
x² = t
t = -9
x² = -9
нет решений (квадрат не может быть равен отрицательному числу)
x² = t
t = -3
x² = -3
нет решений (по той же причине)
Ответ: нет корней