Имеется шесть натуральных чисел. Выписали наименьшие общие кратные всех возможных пар....

0 голосов
40 просмотров

Имеется шесть натуральных чисел. Выписали наименьшие общие кратные всех возможных пар. Может ли оказаться, что выписаны различные числа, не превосходящие 30?


Математика (132 баллов) | 40 просмотров
Дан 1 ответ
0 голосов

Начнем с того, что наименьшее общее кратное будет больше у наибольших взаимно простых чисел.
Пусть последовательность 1,2,3,4,5,6
Числа 5 и 6 - взаимно простые  и НОК(5,6)=30, что удовлетворяет условию!
Остальные числа от 1 до 4 имеют наименьшее общее кратное меньше 30, это можно легко заметить по разложению чисел
1
2- простое
3- простое
4=2*2
3- простое
5- простое
6=2*3

Ответ: да такая последовательность существует и равна 1,2,3,4,5,6

(4.2k баллов)