Высота правильной четырехугольной пирамиды равна 10 см расстояние между диагональю...

0 голосов
77 просмотров

Высота правильной четырехугольной пирамиды равна 10 см расстояние между диагональю основания и боковым ребром равным 60 градусов. Найти полную поверхность пирамиды


Геометрия (36 баллов) | 77 просмотров
0

пожалуйста по подробнее , умоляю , тему не понял , срочно нужно

0

как расстояние равно 60 градусов? Ошибка.

0

это опечатка

0

угол равен 60°

0

Помогите , пожалуйста

Дан 1 ответ
0 голосов
Правильный ответ

Рассмотрим треугольник АВМ, образованный диагональю основания АВ и двумя боковыми сторонами АМ ВМ. Углы с основанием по 60 градусов, угол при вершине тоже 60. Треугольник равносторонний.
Высота этого треугольника МК=10 см по условию.
АК/МК = tg(30°)
АК = 10tg(30°) = 10/√3 см
АВ = 20/√3 см
Площадь основания - половина произведения диагоналей
S₁ = 1/2*(АВ)² = 1/2*400/3 = 200/3 см²
---
Сторона основания
S₁ = a²
a² = 200/3
a = √(200/3) = 10√(2/3) см
Половина основания
a = 5√(2/3) см
Половину основания и боковую сторону мы знаем, по Пифагору найдём апофему f
f² + (5√(2/3))² = (20/√3)²
f² + 25*2/3 = 400/3
f² = 350/3
f = 5√(14/3) см
Площадь боковой грани
S₂ = 1/2*a*f = 1/2*5√(2/3)*5√(14/3) = 25√7/3 cм²
И полная поверхность
S = S₁ + 4S₂ = 200/3 + 4*25√7/3 = 100/3(2 + √7) см²


image
(32.2k баллов)
0

Спасибо ОГРОМНОЕ