Как будет двигаться в магнитном поле первоначально покоящаяся заряженная частица

0 голосов
46 просмотров

Как будет двигаться в магнитном поле первоначально покоящаяся заряженная частица


Физика (17 баллов) | 46 просмотров
Дан 1 ответ
0 голосов

На заряженную частицу в электростатическом поле действует кулоновская сила, которую можно найти, зная напряженность поля в данной точке: . Эта сила сообщает ускорение



где m — масса заряженной частицы. Как видно, направление ускорения будет совпадать с направлением , если заряд частицы положителен (q > 0), и будет противоположно , если заряд отрицателен (q<0).<br>
Если электростатическое поле однородное ( = const), то ускорение a= const и частица будет совершать равноускоренное движение (при отсутствии других сил).

Вид траектории частицы зависит от начальных условий. Если вначале заряженная частица покоилась или ее начальная скорость сонаправлена с ускорением , то частица будет совершать равноускоренное прямолинейное движение вдоль поля и ее скорость будет расти. Если , то частица будет тормозиться в этом поле.

Если угол между начальной скоростью и ускорением острый 0 < α < 90° (или тупой), то заряженная частица будет двигаться по параболе.

Во всех случаях при движении заряженной частицы будет изменяться модуль скорости, а следовательно, и кинетическая энергия частицы.

1. Заряженная частица влетает в магнитное поле со скоростью , направленной вдоль поля или противоположно направлению магнитной индукции поля .

В этих случаях сила Лоренца и частица будет продолжать двигаться равномерно прямолинейно.

2. Заряженная частица движется перпендикулярно линиям магнитной индукции

тогда сила Лоренца , следовательно, и сообщаемое ускорение будут постоянны по модулю и перпендикулярны к скорости частицы.

В результате частица будет двигаться по окружности , радиус которой можно найти на основании второго закона Ньютона:



Отношение — называют удельным зарядом частицы.



Период вращения частицы



то есть период вращения не зависит от скорости частицы и радиуса траектории.

3. Скорость заряженной частицы направлена под углом к вектору.



Движение частицы можно представить в виде суперпозиции равномерного прямолинейного движения вдоль поля со скоростью и движения по окружности с постоянной по модулю скоростью в плоскости, перпендикулярной полю.

Радиус окружности определяется аналогично предыдущему случаю, только надо заменить на , то есть



В результате сложения этих движений возникает движение по винтовой линии, ось которой параллельна магнитному полю. Шаг винтовой линии



Направление, в котором закручивается спираль, зависит от знака заряда частицы.

Если скорость заряженной частицы составляет угол α с направлением вектора неоднородного магнитного поля, индукция которого возрастает в направлении движения частицы, тο R и h уменьшаются с ростом B. На этом основана фокусировка заряженных частиц в магнитном поле.

Если на движущуюся заряженную частицу помимо магнитного поля с индукцией действует одновременно и электростатическое поле с напряженностью , то равнодействующая сила, приложенная к частице, равна векторной сумме электрической силы и силы Лоренца: . Характер движения и вид траектории зависят в данном случае от соотношения этих сил и от направления электростатического и магнитного полей.

(113 баллов)