0\\ \\ \frac{1}{\sqrt{2}}sin(3x)+\frac{1}{\sqrt{2}}cos(3x)=1\\\\ sin(3x)cos(\frac{\pi}{4})+cos(3x)sin(\frac{\pi}{4})=1\\\\ sin(3x+\frac{\pi}{4})=1\\\\ 3x+\frac{\pi}{4}=\frac{\pi}{2}+2 \pi k, k \in Z;\\\\ 3x=\frac{\pi}{4}+2 \pi k, k \in Z;\\\\ x=\frac{\pi}{12}+\frac{2}{3} \pi k, k \in Z\\ " alt=" sin(3x)+cos(3x)=\sqrt{2}|:\sqrt{2}>0\\ \\ \frac{1}{\sqrt{2}}sin(3x)+\frac{1}{\sqrt{2}}cos(3x)=1\\\\ sin(3x)cos(\frac{\pi}{4})+cos(3x)sin(\frac{\pi}{4})=1\\\\ sin(3x+\frac{\pi}{4})=1\\\\ 3x+\frac{\pi}{4}=\frac{\pi}{2}+2 \pi k, k \in Z;\\\\ 3x=\frac{\pi}{4}+2 \pi k, k \in Z;\\\\ x=\frac{\pi}{12}+\frac{2}{3} \pi k, k \in Z\\ " align="absmiddle" class="latex-formula">
Первое аналогично