В трапеции ABCD диагональ BD перпендикулярна основаниям AD и BC, сумма острых углов A и C равна 90 градусам. Найдите длинну большей диагонали трапеции, если основание AD=2, DC=5
Т.К. противолежащие углы у параллелограмма равны, то А=С=45⁰, Вд перпендикулярно АД⇒ в треугольнике АДВ угол в равен 45°⇒ в трапеции угол В=Д =45+90=135°
По теореме косинусов
АД= АД²+ДС²-2АД·ДС·cosD=4+25-20·cos135°=29-20·(-0.7)=43