Решите неравенство подробно х^2(-х^2-49)<=49(-х^2-49)

0 голосов
61 просмотров

Решите неравенство подробно х^2(-х^2-49)<=49(-х^2-49)


Алгебра (145 баллов) | 61 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

X²(-x² - 49) ≤ 49(-x² - 49)
x²(-x² - 49) - 49(-x² - 49) ≤ 0 // перенесли все слагаемые влево
(x² - 49)(-x² - 49) ≤ 0 // вынесли за скобку общий множитель (увидели, что и в x²(-x² - 49), и в 49(-x² - 49) есть (-x² - 49)
-(x² - 49)(x² + 49) ≤ 0 // вынесли минус из (-x² - 49)
(x² - 49)(x² + 49) ≥ 0 // разделили обе части неравенства на -1, поэтому поменялся знак
x² + 49 всегда принимает положительные значения: оба слагаемые положительные, поэтому отрицательное или нулевое значение не получится. Тогда нужно, чтобы x² - 49 был неотрицательным (т.е. положительным + может быть нулем), т.к. иначе все выражение станет отрицательным. 
x² - 49 ≥ 0 
Здесь решайте, как вам нравится: методом интервалов или рисуя параболу. В любом случае, находим нули: это -7; 7 – и наносим их на координатную ось. Если рисуете параболу: графиком функции y = x² - 49 является парабола ветвями вверх (a = 1 > 0), делаете эскиз (то есть рисуете параболу ветвями вверх, проходящую через найденные нули) и расставляете знаки: где парабола принимает отрицательные значения, т.е. располагается ниже оси x, там минус, где выше – там плюс. Нам нужны положительные решения, поэтому мы выбираем, где плюс (ответ чуть ниже). Если решаете методом интервалов: рисуете промежутки: до -7, от -7 до 7 и от 7 – и расставляете на них знаки. Коэффициент перед x > 0, начинаем с знака + (справа налево) и чередуем. Ответ ниже. 
x ∈ (-∞; -7] ∪ [7; +∞). 

Ответ: x ∈ (-∞; -7] ∪ [7; +∞). 
Спрашивайте в комментариях, если что-то непонятно. 

(3.0k баллов)