Дано: sin α + cos α = 0,5
Вычислить: sin⁵α + cos⁵α
I. sin α + cos α = 1/2 возвести обе части в квадрат
sin²α + 2sinα cosα + cos²α = 1/4
1 + sin (2α) = 1/4
sin (2α) = -3/4
II.
sin⁵α + cos⁵α =
=(sinα + cosα)(sin⁴α - sin³α*cosα + sin²α*cos²α - sinα*cos³α + cos⁴α) =
=0,5((sin⁴α + 2sin²α*cos²α + cos⁴α) - sin²α*cos²α - (sin³α*cosα+sinα*cos³α))=
=0,5( (sin²α + cos²α)² - sin²α*cos²α - sinα*cosα (sin²α + cos²α) )=
=1= =1=
=0,5 (1 - (1/4)(2sinα*cosα)² - (1/2)*(2sinα*cosα) ) =
=0,5 (1 - (1/4) sin²(2α) - (1/2) sin(2α)) =
sin⁵α + cos⁵α =
-----------------------------------------------------------------------
Использованы формулы
sin²α + cos²α = 1
2 sinα cosα = sin (2α)
a⁵ + b⁵ = (a + b)(a⁴ - a³b + a²b² - ab³ + b⁴)