₂ ₂ ₂
∫₋₁3x²dx=3x³/3|₋₁=x³|₋₁=2³-(-1)³=8+1=9
₃ ₃ ₃
∫₂dx/x²=∫₂x⁻²dx=-1/x|₂=-1/3-(-1/2)=-1/3+1/2=1/6
₉ ₉
∫₄dx/√x=2√x|₄=2√9-2√4=6-4=2
π π π
∫sin2xdx=1/2∫sin2xd2x=-cos2x/2|=-cos2π/2-(-cos(-4π)/2)=-1/2+cos4π/2=
-2π -2π -2π =-1/2+1/2=0
₋₁ ₋₁
∫₋₂(6x²+2x-10)dx=(2x³+x²-10x)|₋₂=-2+1+10-(-16+4+20)=9-8=1
₂ ₂
∫₋₃(2x-3)dx=(x²-3x)|₋₃=4-6-(9+9)=-20