Из точки ** окружности, длина которой 52 см, опущен перпендикуляр, делящий её диаметр **...

0 голосов
177 просмотров

Из точки на окружности, длина которой 52 см, опущен перпендикуляр, делящий её диаметр на отрезки в отношении 4: 9. Найдите длину этого перпендикуляра.


Геометрия (26 баллов) | 177 просмотров
Дан 1 ответ
0 голосов

Длина окружности L=2πR=52; R=52/2π=26/π.
Пусть одна часть равна х, тогда согласно условию ВМ=4х; СМ=9х.
ВС=2R=4х+9х=13х.
2R=13х или 2·26/π=13х;  х=(52/π)/13=4/π.
ΔАВС - прямоугольный, ∠А=90°. АМ²=ВМ·СМ; АМ²=4х·9х=36х²;
АМ=√36х²=6х=3·(4/π)=12/π см.


image
(6.8k баллов)