Сформулировать и доказать теорему Пифагора

0 голосов
48 просмотров

Сформулировать и доказать теорему Пифагора


Математика (75 баллов) | 48 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Одним из наиболее популярных в учебной литературе доказательств алгебраической формулировки является доказательство с использованием техники подобия треугольников, при этом оно почти непосредственно выводится из аксиом и не задействует понятие площади фигуры. В нём для треугольника {\displaystyle \triangle ABC} с прямым углом при вершине {\displaystyle C} со сторонами {\displaystyle a,b,c}, противолежащими вершинам {\displaystyle A,B,C}соответственно, проводится высота {\displaystyle CH}, при этом (согласно признаку подобия по равенству двух углов) возникают соотношения подобия: {\displaystyle \triangle ABC\sim \triangle ACH} и {\displaystyle \triangle ABC\sim \triangle CBH}, из чего непосредственно следуют соотношения:

{\displaystyle {\frac {a}{c}}={\frac {|HB|}{a}}}; {\displaystyle {\frac {b}{c}}={\frac {|AH|}{b}}}.

При перемножении крайних членовпропорций выводятся равенства:

{\displaystyle a^{2}=c\cdot |HB|}; {\displaystyle b^{2}=c\cdot |AH|},

покомпонентное сложение которых даёт требуемый результат:

{\displaystyle a^{2}+b^{2}=c\cdot \left(|HB|+|AH|\right)=c^{2}\,\Leftrightarrow \,a^{2}+b^{2}=c^{2}}.

(52 баллов)
0 голосов

Квадрат гипотенузи равен сумме квадратов катетов

(253 баллов)