В треугольнике ABC ∠A=54∘, ∠B=66∘, отрезок AK - высота треугольника. Найдите радиус окружности, описанной около треугольника ABK, если радиус окружности, описанной около треугольника ABC, равен 6.
Радиус описанной окружности равен отношению стороны треугольника к удвоенному синусу противолежащего угла. Радиус описанной около тр-ка АВС окружности равен 6, получим: 6=АВ/2*sin60°=АВ/√3 АВ=6√3 Треугольник АВК - прямоугольный. Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы, т.е. радиус окружности равен половине гипотенузы R=1/2АВ=3√3