При яких значеннях параметра а рівняння (3а-2)х2-(4-6а)х+а+2=0 має розв'язки

0 голосов
45 просмотров

При яких значеннях параметра а рівняння (3а-2)х2-(4-6а)х+а+2=0
має розв'язки


Алгебра (24 баллов) | 45 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Решение:
Рассмотрим два возможных случая:
1) Если 3а - 2 = 0, т.е. 3а = 2, а = 2/3, то
0•х^2 - (4-6• 2/3)•х+2/3+2=0
0•х = - 2 2/3
Линейное уравнение корней не имеет.
2) Если 3а - 2 не равно 0, а не равно 2/3, то
Квадратное уравнение имеет корни в том случае, когда его дискриминант неотрицательный.
D = b^2 -4ac
D = (4 - 6a )^2 -4• (3a - 2)•(a + 2) = 16 - 48a + 36a^2 - 12a^2 + 8a - 24a + 16 = 24a^2 - 64а +32 = 8•(3a^2 - 8а + 4);
D ≥0,
D1 = 64 - 48 = 16
a1 = (8 + 4):6 = 2
a2 = (8 - 4) : 6 = 2/3
24( a - 2)(a -2/3) ≥0

___+___(2/3)____-___[2]___+___а

Получили, что уравнение
(3а-2)х^2 - (4-6а)х + а + 2 = 0 имеет действительные корни при всех значениях а, принадлежащих промежуткам:
(- ∞; 2/3) U [2; + ∞)

(29.8k баллов)