Площадь полной поверхности усечённого конуса равна сумме площадей боковой поверхности и его оснований.
S=п(R^2+(R+r)*l+r^2)
Найдем радиус меньшего основания и образующую. Образующая, больший радиус и высота образуют прямоугольный треугольник. Т.к. больший угол 60°, то другой 30°. Катет, противолежащий углу 30°, равен половине гипотенузы. Пусть радиус равен х, тогда образующая 2х. Используем теорему Пифагора
(2x)^2-x^2=(4√3)^2
4x^2-x^2=48
3x^2=48
x^2=16
x=4
Значит образующая равна 8 см
Меньший радиус 6 см
S=п(100+(10+6)*8+36)=п(100+128+36)=264п