0\; pri\; x\in (-\infty ,+\infty )\; \; \to \; \; \frac{x-1}{x+8}\leq 0\\\\x-1=0\; ,\; \; x_1=1\; \; ;\; \; \; x+8=0\; ,\; \; x_2=-8\\\\ +++(-8)---[\, 1\, ]+++\\\\\underline {x\in (-8,1\, ]} " alt=" \frac{x^3-x^2+x-1}{x+8}\leq 0\\\\\frac{x^2(x-1)+(x-1)}{x+8}\leq 0\\\\\frac{(x-1)(x^2+1)}{x+8} \leq 0\\\\x^2+1>0\; pri\; x\in (-\infty ,+\infty )\; \; \to \; \; \frac{x-1}{x+8}\leq 0\\\\x-1=0\; ,\; \; x_1=1\; \; ;\; \; \; x+8=0\; ,\; \; x_2=-8\\\\ +++(-8)---[\, 1\, ]+++\\\\\underline {x\in (-8,1\, ]} " align="absmiddle" class="latex-formula">